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Abstract

A genetic algorithm code, JavaGenes, was written in Java and used to evolve 
pharmaceutical drug molecules and digital circuits. JavaGenes was run under the 
Condor cycle-scavenging batch system managing 100-170 desktop, desk-side, and 
rack-mounted SGI workstations. Genetic algorithms mimic biological evolution by 
evolving solutions to problems using crossover and mutation. While most genetic 
algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) 
molecules and circuits. Java was chosen as the implementation language because the 
genetic algorithm requires random splitting and recombining of graphs, a complex data 
structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-
bound indices, and other hard to find bugs. Java garbage-collection memory 
management, lack of pointer arithmetic, and array-bounds index checking reduces the 
frequency of these bugs, substantially reducing development time. While a run-time 
performance penalty must be paid, the only unacceptable performance we encountered 
was using standard Java serialization to checkpoint and restart the code. This was fixed 
by a two-day implementation of custom checkpointing. JavaGenes is minimally 
integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/
O redirection. A prototype Java-aware version of Condor was developed using standard 
Java serialization for checkpointing. For the prototype to be useful, standard Java 
serialization must be significantly optimized. JavaGenes is approximately 8700 lines of 
code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. 
Results include proof that genetic algorithms can evolve directed and undirected 
graphs, development of a novel crossover operator for graphs, a paper in the journal 
Nanotechnology [Globus, et al. 1999], and another paper in preparation. 

Introduction

This paper is a case study of running genetic algorithms written in Java under Condor. 
To understand the experience and results, it is necessary to have some understanding 
of both genetic algorithms and Condor. Since this paper is written for the Java Grande 
2000 conference, we expect readers to understand the Java programming language 
and run-time environment. 

Genetic Algorithms

Genetic algorithms seek to mimic natural evolution's ability to produce highly functional 
objects. Natural evolution produces organisms. Genetic algorithms produce sets of 
parameters, programs, molecular designs, and many other structures. Genetic 
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algorithms usually solve problems by: 

1.  Randomly generating a population of individual potential solutons 
2.  For each new generation, repeatedly selecting parent individuals at random with 

a bias towards better individuals and applying transmission operators to produce 
children. Transmission operators include: 

1.  Crossover: each of two parents is divided into two parts and one part from 
each parent is combined into a child. 

2.  Mutation: a single "parent" is randomly modified to generate a child. 
3.  Reproduction: a single "parent" is copied into the new generation. 

3.  Continuing until an acceptable solution is found or exhaustion sets in. 

A key issue is what constitutes "better individuals." This is determined by a "fitness 
function." The fitness function takes individuals (strings, trees, or graphs) as input and 
returns a number representing the fitness of that individual. 

Genetic algorithms differ in their representation of solutions. Bit string representations 
were used in the first genetic algorithms [Holland 1975], but arrays of floating point 
numbers, special symbols that generate circuits [Lohn  and Colombano 1998], robot 
commands [Xiao, et al. 1997], and many other symbols may be found in the literature. 
Strings may be of fixed or variable length. Trees can also be evolved [Koza 1992]. This 
is usually called genetic programming, because trees are particularly useful for 
representing computer programs. Many molecules contain cycles, which chemists call 
rings, and strings and trees don't contain cycles. Therefore, we took the unusual 
approach of evolving graphs. Graphs are a set of vertices (for example, atoms) and a 
set of edges (for example, bonds), each of which connects two vertices. In this paper, 
the term graph does not refer to a two dimensional image used for data presentation. 
Figure 1 depicts crossover using strings, trees and graphs. 

Figure 1: Crossover 
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Crossover can be applied to strings, trees, and 
graphs. Note that only graph crossover requires 
multiple break points and that recombination must 
work on fragments with different numbers of 
broken edges. Particularly with large multi-ring 
molecules, these complex data structure 
manipulations are more error prone in C/C++/
FORTRAN than in Java. 

Evolving graphs involves randomly splitting arbitrary graphs into two fragments and 
then combining fragments. Splitting a complex graph, such as morphine (figure 2) 
involves data structure manipulations that can easily result in various bugs. Java was 
chosen as the implementation language to minimize these problems. 

Figure 2: Morphine 

 

JavaGenes has been used for pharmaceutical drug and digital circuit design. One 
approach to drug design is to find molecules similar to good drugs. Ideally, a candidate 
replacement drug is sufficiently similar to have the same beneficial effect, but is different 
enough to avoid negative side effects. To use JavaGenes for similarity-based drug 
discovery we need a good similarity measure that can score any molecule. [Carhart, et 
al. 1985] defined such a similarity measure, all-atom-pairs-shortest-path, and searched 
a large database for molecules similar to diazepam. We use a closely related similarity 
technique to evolve a population of molecules towards a target drug molecule. 

For an excellent review of genetic algorithms and related  techniques as of Spring 1997, 
see [Baeck 1997]. 

Condor

Genetic algorithms have the fortunate property of being embarrassingly parallel, 
because fitness function evaluation is usually the most time-consuming step in the 
genetic algorithm, and there is no dependency between fitness function evaluations. 
Not only can many fitness function evaluations be conducted in parallel, but since 
genetic algorithms are statistical, it is usually necessary to make many runs to support a 
hypothesis. In our work, we usually run 31 jobs with the same input parameters, each 
job differing only in the random number seed. This provides completely trivial 31 way 
parallelism. Furthermore, we are usually running several experiments at the same time. 
Thus, it is not uncommon for our project to run 100-200 jobs simultaneously. It's also 
quite easy to implement parallel fitness function evaluation within a single job, although 

http://www.nas.nasa.gov/Research/Reports/Techreports/2000/nas-00-006.html (3 of 13)10/22/2004 2:14:39 AM



Condor: Cycle-Scavenging Genetic Algorithms 

we haven't found that to be necessary yet. 

Embarrassingly parallel programs are a natural match for Condor [Litzkow, et al. 1988]. 
Condor is a software system that creates a High Throughput Computing [Livny and 
Raman 1999] environment by effectively harnessing the power of a cluster of UNIX 
workstations on a network. Although Condor can manage a dedicated cluster of 
workstations, a key appeal of Condor is its ability to effectively harness non-dedicated, 
preexisting resources in a distributed ownership setting such as machines sitting on 
people's desks in offices and labs. We ran JavaGenes on the NAS Condor pool. NAS is 
the primary NASA supercomputer center [NAS]. Approximately 200 workstations, 
purchased and used for software development, visualization, email, document 
preparation, etc., are available for batch processing during idle times. The Condor 
daemons watch these 200 workstations. When a workstation has been idle for 2 hours, 
a job from the batch queue is assigned to the workstation and will run until the 
workstation detects a keystroke, mouse motion, or relatively high non-Condor CPU 
usage. At that point, the job will be removed from the workstation and placed back on 
the batch queue.  As mentioned before, it's not uncommon to have a few hundred 
JavaGenes jobs in the queue. 

Because a JavaGenes job running under Condor may be vacated (removed from the 
workstation) at any time, the job must save state (checkpoint) periodically. Condor 
provides a generic checkpoint/restart facility, but for reasons discussed below, we could 
not use this facility for JavaGenes. Checkpointing was initially implemented using 
standard Java serialization. Conceptually, this is relatively simple since the state of a 
genetic algorithm is simply the current population. However, standard Java serialization 
turned out to be a serious, but fixable, performance problem, as others have discovered 
[Wims and Xu 1999]. See the section below on serialization performance. 

Approach

JavaGenes was written in 100% pure Java, version 1.1. There were approximately 
8670 lines of source, not including the graph layout code (Jiggle) provided by Daniel 
Tunkelang [Tunkelang 1998]. The graph layout code was used to arrange graph 
vertices in three dimensions for viewing. We will now discuss some of the objects 
implemented in JavaGenes. 

Objects

The nouns used to describe genetic algorithms all became classes, including the 
following: 

●     Population -- an array of Individuals.

●     Individual -- an Evolvable and its fitness.

●     Evolvable (nonstandard terminology) -- a data structure capable of being evolved 
by ChildMaker objects. Currently, only Graph plus subclasses Molecule and 
DigitalLogicGraph are implemented, but plans for arrays and trees exist.

●     FitnessFunction -- these objects have a 'double evaluate(Evolvable)' method that 
implements the desired fitness function. General purpose FitnessFunction 
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subclasses included weighted sum (of other FitnessFunctions) and MultiplyBy.

●     Breeder (nonstandard terminology) -- a class with a 'Population breed
(Population)' method that evolves one population into another.

●     ChildMaker (nonstandard terminology) -- these objects tell a Breeder how many 
parents they want (two for crossover, one for mutation), then take an array of 
parents and produce an array of children.

Another set of classes are responsible for creating, manipulating, and managing 
graphs: 

●     Graph, along with subclasses Molecule and DigitalLogicGraph.

●     Vertex, along with subclasses Atom, DigitalInput, DigitalOutput, and 
DigitalDevice (or, and, xor, etc.).

●     Edge, along with subclasses Bond and DigitalWire.

●     BrokenGraph -- responsible for a graph fragment after crossover splits a graph.

●     BrokenEdge -- responsible for an edge broken during splitting.

●     VertexProvider and EdgeProvider -- these classes are used during graph 
generation and mutation to provide random vertices and edges of various types.

In addition, there are several convenience classes: 

●     Parameters, along with subclasses MoleculeParameters and 
DigitalLogicParameters. These objects hold all the values that are typically 
varied from job to job; for example: population size, maximum number of 
generations, fitness function, etc. Most of the JavaGenes class files are kept in a 
jar file, but the parameter files are compiled for each set of jobs and placed 
earlier in the CLASSPATH. This provides a flexible mechanism (taking 
advantage of Java dynamic loading) to set input parameters without writing an 
input file parser.

●     InputTokenizer and OutputTokenizer -- these are used to save and restore state. 
They can read and write integers, doubles, etc.

Free Code

A certain amount of Java code is available for free on the Web. We took advantage of 
this in two cases. First, the Student T-Test code used in the statistics class was 
supplied by NWP Associates, Inc. This was a minor, but helpful, convenience. Second, 
and more important, one must examine the evolved graphs to understand the results. 
To examine a graph, it must be laid out in two or three dimensions for viewing. In other 
words, xyz locations for each vertex must be chosen. The graph layout problem is non-
trivial. In fact, it is very difficult. Fortunately, Daniel Tunkelang made his Jiggle Java 
code [Tunkelang 1998] available, and Jiggle has done an excellent job of laying out 
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graphs evolved by JavaGenes. Integration of the two packages was quick and easy. 
Only one bug was found in Jiggle (1615 lines of source). That bug was an infinite loop, 
which was found and fixed in a little over an hour. 

Development Environment

JavaGenes was developed on a Compaq laptop running Windows 95. Windows was 
used because the main developer cannot type for significant lengths of time and uses a 
voice recognition system. The first development environment was Visual Cafe. This was 
abandoned because the debugger was quite buggy. The second development 
environment was Supercede. Various problems required periodic re-installation, which 
in turn caused serious problems with Windows 95. Finally, Borland JBuilder was tried 
and there have been relatively few problems. CodeWarrior was used occasionally for 
specific debugging problems. Although some compilers are a bit pickier than others, no 
significant problems were encountered moving the code from one development 
environment to another; or moving the source or class files to the SGI version of the 
JDK to run experiments. 

Condor Support for Java

Condor runs each job in an environment called a "universe." The two most important 
universes are called "Standard" and "Vanilla." Standard jobs are programs that have 
been linked with a special Condor version of the C runtime library that mimics the 
effects of most UNIX system calls and adds two kinds of enhanced functionality: remote 
system calls and checkpointing. 

Remote system calls provide a uniform environment to a job running on any workstation 
on a network. The Condor runtime library replaces system calls with remote procedure 
calls to a shadow process running on the workstation that submitted the job. The 
shadow makes the system call on behalf of the remote process and returns the results. 
For example, the open system call sends the name of the desired file to the shadow, 
which searches for it on the submitter's home workstation. Subsequent read and write 
calls access that file over the network. The result is that the job sees the same file-
system environment regardless of where it runs, and all file output is captured in files on 
the submitting workstation. 

Checkpointing is also implemented by the Condor runtime library. Each Condor job is 
run under the control of a starter process. When a workstation needs to be appropriated 
for another purpose, the starter sends a terminate signal to the application process. The 
Condor library catches this signal and sends a complete dump of the state of the 
process back to the submitting machine, where it awaits its turn to be restarted on 
another worker machine. This checkpoint file includes a binary dump of the entire virtual 
memory image of the process. It also includes a record (collected by the remote system 
calls) of the current state of the process' interaction with the operating system kernel. 
For example, for each file opened by the job, the checkpoint file records the name of the 
file and the current offset within the file (the "seek pointer"). Condor can also be 
instructed to send a "checkpoint" signal to the starter at periodic intervals. The starter 
responds to this signal by suspending the application, checkpointing it, and then 
allowing it to continue. Under some circumstances, Condor may send other signals to 
the starter, asking it to suspend the application, resume it, or kill it without giving it a 
chance to checkpoint. 
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Neither remote system calls nor checkpointing require any source-level modifications to 
the application program, but they do require it to be re-linked with a special version of 
the system libraries. They also impose some restrictions on the set of system services 
available to the job. In particular, Condor does not currently support Standard jobs that 
use kernel-level threads. Programs that cannot be re-linked or that do not meet these 
requirements must be run in the Vanilla universe. An arbitrary executable program can 
be run as a Vanilla job, but any I/O operations will access the file system of whatever 
machine the job happens to be running on, and if the workstation is pre-empted (for 
example, by an interactive user), the job is simply killed and restarted from the 
beginning on another workstation. At NAS, in general, Condor jobs do not have 
permission to use the local disk on the worker workstation. 

Most of the JavaGenes runs described in this paper used the Vanilla universe. The 
Java Virtual Machine (JVM) from SGI and Sun was available to us only in binary (pre-
linked) form. We tried the Kaffe open-source JVM, but found that it had bugs that 
prevented us from running JavaGenes correctly for more than a few generations. 
Moreover, both JVM's use certain facilities -- notably kernel-level threads -- that are not 
supported in Condor Standard jobs. Fortunately, the remote system call facility was not 
necessary in our environment, since we use the Network File System (NFS), which 
provides a uniform interface to files from all workstations. In this environment, the "job" 
submitted to Condor is a tcl script that calls the JVM, with the name of the application 
class supplied as a command-line argument. From the point of view of the JVM, the 
class files that constitute the application are simply data files that appear to be on the 
local disk of the worker machine through the magic of NFS. Similarly, NFS is used to 
create output files on the submitting workstation. 

The lack of automatic checkpointing was a more serious problem. As mentioned earlier, 
we tried two different application-specific checkpointing strategies. Both involved 
periodically invoking a checkpoint method that saves the state of the computation into a 
file. JavaGenes invokes this method after each new child is created. If a workstation is 
preempted before the program finishes, it is killed and restarted "from the beginning." 
However, at startup, JavaGenes jobs look for a checkpoint file (via NFS) so they can 
initialize state and continue from the last checkpoint. Thus, a job that is killed and 
restarted loses only the work it did between its most recent checkpoint and the time it 
was killed. 

To provide better support for JavaGenes and other Java Grande applications, the 
Condor project has been developing a Java universe. To run under this 
universe, a Java program must implement the Checkpointable interface: 

    public interface Checkpointable extends Serializable { 
        void start(String[] arguments); 
        void restart(); 
        void beforeCheckpoint(); 
        void afterCheckpoint(); 
        void setCheckpointer(Checkpointer c); 
    } 

Each universe has its own kind of starter. The starter for the Java universe is written in 
Java and extends java.lang.ClassLoader. A "job" in the Java universe is a class 
file. We assume that each worker machine has a JVM installed locally, but otherwise do 
not require any network file system or uniform file environment. The Java starter loads 
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all required classes over the network by communicating with a Java version of the 
shadow using the Java RMI (Remote Method Invocation) interface. The Java starter 
creates an instance prog of the application program class and calls either prog.start
() or prog.restart(), depending on whether there is an existing checkpoint file 
from an earlier run of this job. The starter also creates an instance cp of a Checkpointer 
object, passing prog to its constructor, and calling prog.setCheckpointer(cp) so 
that prog and cp can refer to each other. Prog can also access cp through static 
methods in Checkpointer as long as there is only one instance of Checkpointer. When 
the starter receives a terminate or checkpoint signal, it calls cp.
checkpointWhenPossible(), which sets a flag indicating that a checkpoint has 
been requested. It does not force an immediate checkpoint because the application 
object may not be in a "quiescent" state in which checkpointing is convenient. The 
application itself is expected to call cp.ok() periodically. If no checkpoint has been 
requested, this method simply returns without doing anything. However, if a checkpoint 
request is pending, the checkpointer uses Java serialization to save the state of the 
object by calling writeObject(prog). It also calls prog.beforeCheckpoint() 
before the checkpoint and prog.afterCheckpoint() after. 

The writeObject method saves all of the non-transient fields of the object, as well as 
all objects pointed to by those fields, all fields of those objects, etc. It does not, 
however, save anything from the runtime stack -- that is, the values of local variables. It 
is the responsibility of the application to update the non-transient fields of the 
application object to reflect the complete state of the application either before calling 
cp.ok or in the method beforeCheckpoint. If these updates are costly, they should 
be in beforeCheckpoint because this method is only called if the checkpoint is 
actually performed. The beforeCheckpoint and afterCheckpoint methods also 
provide hooks for application-specific performance monitoring, such as determining the 
amount of time spent checkpointing. A typical application might look like this: 

    class Application implements Checkpointable { 
        private Checkpointer checkpoint; 
        private GlobalState state; 
        private int lastStepCompleted; 
        private transient Vector intermediateResults; 
        private int iterations;  // set by initializeState 
        private PerformanceStatistics statistics; 
        public void setCheckpointer(Checkpointer checkpoint) { 
            this.checkpoint = checkpoint; 
        } 
        public void start(String[] args) { 
            state.initialize(args); 
            intermediateResults = new Vector(); 
            iterateFrom(0); 
        } 
        public void restart() { 
            intermediateResults = new Vector(); 
            state.restore(intermediateResults); 
            iterateFrom(lastStepCompleted); 
        } 
        private void iterateFrom(int start) { 
            for (int i = start; i < iterations; i++) { 
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                intermediateResults.add(oneStepOfAlgorithm()); 
                lastStepCompleted = i; 
                checkpoint.ok(); 
            } 
            printResults(); 
        } 
        public void beforeCheckpoint() { 
            statistics.startTimer(); 
            state.update(intermediateResults): 
        } 
        public void afterCheckpoint() { 
            statistics.stopTimer(); 
        } 
        // Methods initializeState, oneStepOfAlgorithm, 
        // startTimer, etc. omitted for brevity. 
    } 

The Java universe provides several advantages over the Vanilla universe for Java 
applications: 

●     It supports remote system calls, so that it does not depend on the availability of a 
network file system (and uniform conventions for mount points).

●     It automates more of the tasks necessary for checkpointing and recovery.

●     It allows Condor to decide when to checkpoint a job, only requiring the 
application code to indicate when a checkpoint is safe.

●     It allows a job to migrate among hardware platforms during its lifetime. A job in 
the Java universe is comprised of class files and a checkpoint file, all of which 
are platform-independent.

A prototype version of the Java universe successfully ran JavaGenes but it was not 
stable enough for production use at the time the experiments described in this paper 
were run. Also, the Java universe uses Java serialization to checkpoint jobs. Our 
experience indicates that standard Java serialization is too slow for JavaGenes to use. 

Results

The bottom line for JavaGenes on Condor was to run many jobs to conduct the 
experiments necessary to start understanding the application of genetic algorithms to 
graphs. In this, we were successful. Thousands of jobs were successfully run, one 
genetic algorithm paper was published [Globus, et al. 1999], and another is in 
preparation [Globus, et al. 2000]. JavaGenes does a fairly good job of evolving 
pharmaceutical drug molecules, but can only evolve trivial circuits so far. We now 
examine the pros and cons of using Java for our application. 

Java Con

Java Serialization Performance
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It was discovered that creating serialization files and reading them to implement 
checkpoint/restart could take as much as three hours wall clock time. Although Java 
serialization is extremely general-purpose, any object can be serialized and the format 
is CPU independent, it is difficult to understand why three hours is needed to serialize a 
few hundred graphs, some ancillary objects, and a few thousand real numbers (the 
data). In any case, jobs under these conditions made no progress. In addition, the 
serialization files were around 25 MB and there were often two files per job. Because 
jobs could be interrupted in the middle of serialization, JavaGenes wrote state 
information into a temporary file and, when finished, moved it to the permanent location. 
With long serialization times, most jobs were interrupted in the middle of writing the 
serialization file. Thus, the full checkpoint file and a partial checkpoint file were on disk 
most of the time. With hundreds of jobs, disk usage became substantial. To solve the 
performance problem, Java serialization was abandoned and new code written to save 
the state of the computation and read it back from disk. Development took 
approximately two days and one bug was found and fixed a few days after development 
was "complete." Most checkpoint files are now less than 1 MB. Checkpoint write and 
read usually take around 10 seconds, but can require up to about five minutes 
(including network delays). This was the only performance problem that required 
changes to the code. 

Checkpointing with Serialization

Besides having performance problems, checkpointing with serialization must be 
handled with care. In particular, it is sometimes error prone. It is essential to make sure 
that all of the necessary program state is saved. In the case of genetic algorithms, 
nearly all the state that must be saved is contained in the population. However, if 
checkpointing is allowed in the middle of constructing a new generation, then the loop 
index indicating how much of the next generation has been constructed must also be 
saved. Also, it is difficult to write code that can be interrupted at any time and saved to 
disk. Therefore, checkpointing is restricted to those points in the code where analysis 
can prove that saving and restoring will not cause problems. 

One other fairly serious problem arose. In the initial implementation, JavaGenes started 
a new random number generator after restart. Because of this, evolution did not follow 
the same path taken after the last checkpoint. In other words, the genetic algorithm was 
controlled by different random numbers and therefore searched a different part of the 
search space. That made the algorithm appear more efficient than it was, because the 
number of generations to find a specific target was used as the efficiency measure. 
Consider the case where a job ran for 100 generations up to a checkpoint and 20 more 
generations before being killed. When the job was restarted, 20 different generations 
would be constructed and one of the new generations, say the 10th, might find the 
target. Therefore, it would appear as if the target was found in 110 generations, but 
actually 130 were tried. Thus, jobs might repeatedly search the region around the last 
checkpoint and stop if a solution were found, reporting an inaccurately small number of 
generations to completion. It was therefore necessary, at job restart time, to restart the 
random number generator with the same seed and then execute the random number 
generator the number of times it was executed up to the last checkpoint. This should 
have insured that a job would follow the same evolutionary path regardless of 
checkpoint history. Unfortunately, although this fix worked properly when a job was 
restarted on the same machine, different results were observed in normal execution on 
the Condor pool, where jobs frequently move between machines. These changing 
evolutionary paths were presumably caused by differences in the Java libraries on 
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different versions of the SGI operating system. This may change the order of certain 
lists in JavaGenes and cause the same random number to pick different items from 
these lists. Fortunately, only about 6% of the generations were repeated once 
checkpointing performance was improved, suggesting that the effect was fairly minor.  
Because checkpointing was fast, computations would usually proceed to the next 
checkpoint before being restarted. 

JIT Essential

Some very simple tests indicated that jobs run under the SGI just-in-time compiler were 
approximately 20 times faster than when the JIT was disabled. 

Double Read/Write Java Libraries Bug

It was discovered that the standard Java libraries will write out certain double numbers 
in an ASCII form that is not tolerated as input by the same libraries. In particular,  
System.out.write("" + aDouble) will write out values such as NaN and 
Infinity, but Double(String) will throw an exception if these strings are passed 
as the argument. 

Java Pro

Porting

We never had any problems porting the source or class files between Java 
environments. 

Bugs

Compared to developing in C or C++, there were few bugs and they were easy to find 
and fix. Basically, almost all the bugs were logic problems, most of which were found 
and fixed while single stepping through the code with the graphical debuggers provided 
by the IDEs. The uncontrolled pointers, index out of range, memory management, and 
similar bugs extremely common in the primary programmer's 20 year C and C++ 
development experience almost never occurred. These bugs are also, usually, quite 
difficult to find. Reducing the number of bugs dramatically lowered development time, at 
least subjectively. 

Memory Management

Memory management was trivial. Only one bug was encountered when we neglected to 
create a new xyz array in class Vertex during cloning. Before the bug was fixed, 
after graph layout, all the atoms were displayed at a single point. 

Performance

Other than the serialization problem, performance was not a major issue. This was, in 
part, because Condor supplies us with lots of nearly free CPU cycles, but also because 
Java performance has been reasonable (although certainly not exceptional). 
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In short, we were happy with Java for this application. While there is some run-time 
penalty, more rapid code development and more reliable end-product software is well 
worth the extra CPU cycles. Since cycles are always getting cheaper, and programmers 
and support staff seem to be getting more expensive, we expect Java to do well in the 
coming years. 

Future Work

The main task before JavaGenes is to incorporate more chemical knowledge into the 
fitness functions, because JavaGenes usually evolves molecules that are not 
physiologically stable and that would be difficult, or perhaps impossible, to synthesize. 
To support more Java applications under Condor and more diverse environments, the 
prototype Condor Java universe described in the section on Condor Support for Java 
needs to be brought up to production status.  The performance problem with Java 
serialization needs to be solved more generally, or applications must reimplement 
serialization.  An alternative approach would be to rebuild a Java Virtual Machine as a 
Standard universe job.  This approach has the advantage of requiring less hand-
modification of Java applications, but requires resolution of certain technical and 
licensing issues. 
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